Trigonometry
# ← Methods Home | ← Specialist Home
Specialist Textbook: Cambridge Chapter 10 Specialist Textbook: Cambridge Chapter 11
# Exact Values
# Degrees - Table of Exact Values
$0\degree$ | $30\degree$ | $45\degree$ | $60\degree$ | $90\degree$ | |
---|---|---|---|---|---|
$\sin\theta$ | $\\ 0$ | $\\ \frac{1}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | $\\ 1$ |
$\cos\theta$ | $\\ 1$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\\ \frac{1}{2}$ | $\\ 0$ |
$\tan\theta$ | $\\ 0$ | $\frac{1}{\sqrt{3}}$ | $\\ \\ 1$ | $\sqrt{3}$ | $undefined$ |
# Radians - Table of Exact Values
$\\ 0$ | $\\ \frac{\pi}{6}$ | $\\ \frac{\pi}{4}$ | $\\ \frac{\pi}{3}$ | $\frac{\pi}{2}$ | |
---|---|---|---|---|---|
$\sin\theta$ | $\\ 0$ | $\\ \frac{1}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | $\\ 1$ |
$\cos\theta$ | $\\ 1$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\\ \frac{1}{2}$ | $\\ 0$ |
$\tan\theta$ | $\\ 0$ | $\frac{1}{\sqrt{3}}$ | $\\ \\ 1$ | ${\sqrt{3}}$ | $undefined$ |
# Circle Formulas
Degrees | Radians | |
---|---|---|
Arc Length | $\frac{\theta}{360\degree} × \\ 2{\pi}r$ | $\frac{\theta}{2{\pi}} × \\ 2{\pi}r = {\theta}r$ |
Chord Length | $2r\\ ×\\ \sin{\frac{\theta}{2}}$ | Is the same |
Area of Sector | $\frac{\theta}{360\degree} × \\ {\pi}r^2$ | $\frac{r^2{\theta}}{2}$ |
Area of Segment | $\frac{\theta}{360\degree} × \\ 2{\pi}r - \frac{r^2{\sin}{\theta}}{2}$ | $\frac{1}{2}r^2(\theta - \sin\theta)$ |
# Trigonometric Graphs
- Trigonometry equations have an infinite number of solutions since there is an infinite amount of ways to represent an angle
- e.g. 360$\degree$ = 720$\degree$
# Sine and Cosine Graphs
- General Formula → $y = \textcolor{#E41B17}{a}{\sin}(\textcolor{#357EC7}{b}(x - \textcolor{lightgreen}{c})) + \textcolor{gold}{d}$ / $y = \textcolor{#E41B17}{a}{\cos}(\textcolor{#357EC7}{b}(x - \textcolor{lightgreen}{c})) + \textcolor{gold}{d}$
- Amplitude: $\textcolor{#E41B17}{a}$ (a > 0)
- Period: $\frac{2\pi}{\textcolor{#357EC7}{b}}$
- Range: [$\textcolor{#E41B17}{-a,}$ $\textcolor{#E41B17}{a}$]
- Domain: $\mathbb{R}$
- Horizontal shift by $\textcolor{lightgreen}{c}$
- Vertical shift by $\textcolor{gold}{d}$
# Tangent Graphs
Base Graph 500
- Repeats every $180\degree$ or $\pi$ radians
- Vertical asymptotes at $90\degree\pm 180\degree$
General Equation: $y = \textcolor{#E41B17}{a}{\tan}(\textcolor{#357EC7}{b}(x - \textcolor{lightgreen}{c})) + \textcolor{gold}{d}$
- Components:
- $a$ is the steepness of the graph
- Period: $\frac{\pi}{\textcolor{#357EC7}{b}}$
- The base period is $\pi$
- Horizontal shift by $\textcolor{lightgreen}{c}$
- Vertical shift by $\textcolor{gold}{d}$
- Important Properties:
- The period is $\frac{\pi}{b}$
- The range is $\mathbb{R}$
- The asymptotes have equations $x = \frac{(2k\\ +\\ 1)\pi}{2b}$
- The $x$-intercepts are $x$ = $\frac{k\pi}{b}$
- Components:
# Identities
- Identities are expressions with an $=$ sign which are always true regardless of the value of $x$ or $\theta$
# Complementary Relationships
- Cambridge - Circular Functions 12L
- From a graph of $\textcolor{#427fbb}{\sin(\theta)}$ and $\textcolor{red}{\cos(\theta)}$ we can observe that we can transform both graphs into each other by shifting them horizontally
- $\sin(\frac{\pi}{2} \pm \\ \theta) = \cos(\theta)$
- The $\sin$ graph is shifted to the left
- $\cos(\frac{\pi}{2} +\\ \theta) = \textcolor{#00ddff}{-}\sin(\theta),$ $\cos(\frac{\pi}{2} -\\ \theta) = \sin(\theta)$
- The $\cos$ graph is shifted to the left and is the same as the $\sin$ graph reflected over the $x$-axis ````
- $\sin(\frac{\pi}{2} \pm \\ \theta) = \cos(\theta)$
|
|
# Pythagorean Identities
- $(\sin\theta^2)$ and $(\cos\theta^2)$ can be written as $\sin^2\theta$ and $\cos^2\theta$
- $\sin^2\theta = \sin\theta * \sin\theta$
- Write as $\sin(x)$^$2$ on ClassPad
- Since $\sin\theta$ and $\cos\theta$ represent sides of a right angled triangle inside of a circle with radius 1, using Pythagoras we know that $\sin^2\theta+\cos^2\theta = 1$
450
- This is known as the Pythagorean identity
- $\textcolor{gold}{\sin^2\theta+\cos^2\theta = 1}$
- Can also be rewritten as:
- $1 + \tan^2{\theta} = \sec^2{\theta}$
- $\cot^2{\theta} + 1 = \csc^2{\theta}$
- Can also be rewritten as:
# Angle Sum and Difference Identities
- Cambridge - Circular Functions 12M
- Proofs in textbook
- Basic Identities:
- $\sin(A \pm B) = \sin{A}\cos{B} \pm \cos{A}\sin{B}$
- $\cos(A \pm B) = \cos{A}\cos{B} \mp \sin{A}\sin{B}$
- $\tan(A \pm B) = \frac{\tan{A}\\ \pm\\ \tan{B}}{1\\ \mp\\ \tan{A}\tan{B}}$
- Simplifying $a\cos{x} + b\sin{x}$:
- $a\cos{x} + b\sin{x} = (\sqrt{a^2 + b^2})\cos(x - \alpha)$
- $\cos{\alpha} = \frac{a}{r}$
- $\sin{\alpha} = \frac{b}{r}$
- $a\cos{x} + b\sin{x} = (\sqrt{a^2 + b^2})\sin(x + \beta)$
- $\cos{\beta} = \frac{b}{r}$
- $\sin{\beta} = \frac{a}{r}$
- $a\cos{x} + b\sin{x} = (\sqrt{a^2 + b^2})\cos(x - \alpha)$
Adding ’like’ graphs
Adding $y = {a_1}\sin(x)$ to $y = {a_2}\sin(x)$ equals $y = (a_1 + a_2)\sin(x)$
- This also works for ’like’ cos graphs
# Product-to-Sum and Sum-to-Product Formulas
# Product-to-Sum Identities
- $\cos{A}\cos{B} = \frac{1}{2}(\cos(A − B) + \cos(A + B))$
- $\sin{A}\sin{B} = \frac{1}{2}(\cos(A − B) − \cos(A + B))$
- $\sin{A}\cos{B} = \frac{1}{2}(\sin(A + B) + \sin(A − B))$
# Sum-to-Product Identities
- These are not found in the formula sheet, you must learn to derive them from the product-to-sum identities:
- Let $P = A + B$ and $Q = A - B$
- Then $P + Q = 2A\\ \therefore\\ A = \frac{P + Q}{2}$
- And also $P - Q = 2B\\ \therefore\\ B = \frac{P - Q}{2}$
- $\cos{A} + \cos{B} = 2\cos(\frac{A + B}{2})\cos(\frac{A - B}{2})$
- $\cos{A} - \cos{B} = −2\sin(\frac{A + B}{2})\sin(\frac{A - B}{2})$
- $\sin{A} + \sin{B} = 2\sin(\frac{A + B}{2})\cos(\frac{A - B}{2})$
- $\sin{A} - \sin{B} = 2\sin(\frac{A - B}{2})\cos(\frac{A + B}{2})$
# Double Angle Formulas
- Using addition formulas, we can derive useful expressions for $\sin(2\theta)$, $\cos(2\theta)$ and $\tan(2\theta)$
- We know $2\theta = \theta + \theta$
- $\therefore \cos(2\theta) = \cos(\theta + \theta)$
- Make sure you know how to convert between sine and cosine so you can utilise the double angle formula
- $\sin(2\theta) = 2\sin{\theta}\cos{\theta}$
- $\sin(\theta + \theta) = \sin{\theta}\cos{\theta} + \cos{\theta}\sin{\theta}$
- $\cos(2\theta) = 1 - 2\sin^2\theta$
- $\cos(\theta + \theta) = \cos{\theta}\cos{\theta} - \sin{\theta}\sin{\theta}$
- $= \cos^2\theta - \sin^2\theta$
- ($\cos^2\theta = 1 - \sin^2\theta$)
- $\tan(2\theta) = \frac{2\tan{\theta}}{1\\ -\\ \tan^2\theta}$
- $\tan(\theta + \theta) = \frac{\tan{\theta}\\ +\\ \tan{\theta}}{1\\ -\\ \tan{\theta}\tan{\theta}}$
# Inverse Trigonometric Functions
- Inverse functions need to have a set range otherwise it would not be considered a function since it would not pass the vertical line test
- This is how scientific calculators calculate a value using an inverse trig function
- Range of inverse graphs:
- $\cos^{-1}$ has range {$\theta\\ |\\ 0 \leq \theta \leq \pi$}
- $\sin^{-1}$ has range {$\theta\\ |\\ -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$}
- $\tan^{-1}$ has range {$\theta\\ |\\ -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$}
- General solutions to trigonometric equations:
- For $a ∈ [−1, 1]$, the general solution of the equation $\sin x = a$ is:
- $x = 2nπ + sin^{−1} (a)$ or $x = (2n + 1)π − sin^{−1} (a)$, where $n ∈ \mathbb{Z}$
- For $a ∈ [−1, 1]$, the general solution of the equation $\cos x = a$ is:
- $x = 2nπ ± cos^{−1} (a)$, where $n ∈ \mathbb{Z}$
- For $a ∈ \mathbb{R}$, the general solution of the equation $\tan x = a$ is:
- $x = nπ + tan^{−1} (a)$, where $n ∈ \mathbb{Z}$
- For $a ∈ [−1, 1]$, the general solution of the equation $\sin x = a$ is:
# Reciprocal Circular Functions
- Reciprocal Functions:
- $\sec{\theta} = \frac{1}{\cos{\theta}}$
- $\csc{\theta} = \frac{1}{\sin{\theta}}/\mathrm{cosec}\\ {\theta} = \frac{1}{\sin{\theta}}$
- $\cot{\theta} = \frac{\cos{\theta}}{\sin{\theta}}/\cot{\theta} = \frac{1}{\tan{\theta}}$
- Pythagorean Identities:
- $1 + \tan^2{\theta} = \sec^2{\theta}$
- $\cot^2{\theta} + 1 = \csc^2{\theta}$
# Reciprocal Circular Graphs
- The relationship between $y = f(x)$ and $y = \frac{1}{f(x)}$:
- The $x$-intercepts becomes vertical asymptote
- Positive values from $f(x)$ remain positive and vice-versa
- Local minimum → local maximum and vice-versa
- As $f(x)$ gets larger, $\frac{1}{f(x)}$ gets smaller and vice-versa
- As $f(x) → \infty{^+}$, $\frac{1}{f(x)} → 0^+$
- Where $f(x) = 1$, $\frac{1}{f(x)} = 1$ → the two graphs intercept
- The graph of cotangent is a reflection and translation of the graph of tangent: $\cot(x) = -\tan(x - \frac{\pi}{2})$
# Sec Graphs
- General Equation: $y = \textcolor{#E41B17}{a}{\sec}(\textcolor{#357EC7}{b}(x - \textcolor{lightgreen}{c})) + \textcolor{gold}{d}$
- $\textcolor{#E41B17}{a} =$ distance from line $y = 1$ and trough/peak
- $\textcolor{#357EC7}{b} =$ (distance between troughs/peaks) $/ \frac{\pi}{2}$