Search

Search IconIcon to open search

Trigonometry

Last updated Sep 4, 2023 Edit Source

# ← Methods Home | ← Specialist Home

Specialist Textbook: Cambridge Chapter 10 Specialist Textbook: Cambridge Chapter 11


# Exact Values

# Degrees - Table of Exact Values

$0\degree$$30\degree$$45\degree$$60\degree$$90\degree$
$\sin\theta$$\\ 0$$\\ \frac{1}{2}$$\frac{1}{\sqrt{2}}$$\frac{\sqrt{3}}{2}$$\\ 1$
$\cos\theta$$\\ 1$$\frac{\sqrt{3}}{2}$$\frac{1}{\sqrt{2}}$$\\ \frac{1}{2}$$\\ 0$
$\tan\theta$$\\ 0$$\frac{1}{\sqrt{3}}$$\\ \\ 1$$\sqrt{3}$$undefined$

# Radians - Table of Exact Values

$\\ 0$$\\ \frac{\pi}{6}$$\\ \frac{\pi}{4}$$\\ \frac{\pi}{3}$$\frac{\pi}{2}$
$\sin\theta$$\\ 0$$\\ \frac{1}{2}$$\frac{1}{\sqrt{2}}$$\frac{\sqrt{3}}{2}$$\\ 1$
$\cos\theta$$\\ 1$$\frac{\sqrt{3}}{2}$$\frac{1}{\sqrt{2}}$$\\ \frac{1}{2}$$\\ 0$
$\tan\theta$$\\ 0$$\frac{1}{\sqrt{3}}$$\\ \\ 1$${\sqrt{3}}$$undefined$

# Circle Formulas

DegreesRadians
Arc Length$\frac{\theta}{360\degree} × \\ 2{\pi}r$$\frac{\theta}{2{\pi}} × \\ 2{\pi}r = {\theta}r$
Chord Length$2r\\ ×\\ \sin{\frac{\theta}{2}}$Is the same
Area of Sector$\frac{\theta}{360\degree} × \\ {\pi}r^2$$\frac{r^2{\theta}}{2}$
Area of Segment$\frac{\theta}{360\degree} × \\ 2{\pi}r - \frac{r^2{\sin}{\theta}}{2}$$\frac{1}{2}r^2(\theta - \sin\theta)$

# Trigonometric Graphs

# Sine and Cosine Graphs

# Tangent Graphs

# Identities

# Complementary Relationships

1
2
3
4
5
width=500; height=270;
top=2; bottom=-2; right=5; left=-5;
---
    y=\sin(x)
    y=\cos(x)|RED

# Pythagorean Identities

# Angle Sum and Difference Identities

Adding ’like’ graphs

Adding $y = {a_1}\sin(x)$ to $y = {a_2}\sin(x)$ equals $y = (a_1 + a_2)\sin(x)$

  • This also works for ’like’ cos graphs

# Product-to-Sum and Sum-to-Product Formulas

# Product-to-Sum Identities

# Sum-to-Product Identities

# Double Angle Formulas

# Inverse Trigonometric Functions

# Reciprocal Circular Functions

# Reciprocal Circular Graphs

# Sec Graphs